Drug Discovery Factory for novel drug molecules Micar Innovation (Micar21)

Discovery of the first class of dual CCR5/7 antagonists for COVID-19

CCR5/7 project

- Despite that CCR5/7 are a key targets for HIV, Coronavirus, Cancer metastasis and many other diseases only few antagonists have been developed up to date for CCR5 and non for CCR7. However, one of CCR5 antagonists is under clinical trial in US now (phase 2).
- > We aimed to identify the fist class of dual CCR5/CCR7 small molecule antagonists
- > We used intensive MD simulations (several 1 μs runs) to obtain the CCR5 and 7 structures
- A combination of structural based pharmacophore, docking, IFD and MD approaches were employed in a virtual screen of 4 million compounds
- The most promising compounds have been sent to ThermoFisher companies for bioassays to study both their binding capability and biological response; i.e. whether they are agonists or antagonists
- The compounds have been also studied for their cascade biological response paths: Ca+ mobilization and cAMP assays
- The biological response of most promising hit to the ERK path and GTPyS binding is currently under evaluation in a lab located in Belgium.

CCR5 pharmacophore model employed (top) and binding mode of one of the identified possible VS hits (bottom)

Alignment of MD optimized homology model (rendered in red) vs X-Ray (rendered in green)

CCR5/7 antagonists – Lead1

Thermo Fisher Scientific's SelectScreen[™] Profiling Service: 10-point Titration Antagonist Results (β-arrestin binding assay)

Series of biological tests showed that Lead 1 (cpd2) is an antagonist of CCR7; No any agonist activity was detected

Series of biological tests showed also that Lead 1 (compound 1) is an antagonist of CCR5

Nano and micro molar activity have been detected for CCR7 and CCR5 respectively

CCR5/7 antagonists – Lead1

EuroFines Ca+ mobilization and cAMP assays proved that the our lead compound has a biological response

Micro molar activity have been detected for CCR7 and CCR5 respectively

CCR5/7 antagonists

The intensive molecular modelling and biological data indicate that lead 1 binds to both ortho and allosteric sites

Dose-response to CCR7

Hill coefficient greater than 15 and 7 were obtained for β -arrestin binding and Ca+ assays

CCR5 and CCR7 hit compounds

Thermo Fisher Scientific's SelectScreen[™] Profiling Service: 10-point Titration Antagonist Results

		SelectScreen Scientist:	Matt Blattner				Date:	28-Jur	n-2019				
		Quality Assurance Review:		Aaron Berg	sma		Date:	28-Jur	n-2019				Several other less potent hits were also found
Project #	Cmpd Name	GPCR	Cell Line Tested	Cell Line Part# / Lot#	Stim	IC50	Hillslope	R ² Value	[Cmpd]	% In	hibition	Z'	
SSCG13438 45				KV1531A/413		(nM)			(nM)	Point 1	Point 2		CCR7 : CCR7-bla U2OS
359	cpd1	CCR7	CCR7-bla U2OS	70	Mip3-beta	>10000	0.45	0.6077	10000	17	21	0.40	cpd1
SSCG13438_45 359	cpd1	CCR7	CCR7-bla U2OS	KV1531A/413 70	Mip3-beta	>10000	0.45	0.6077	3160	37	26	0.40	¹²⁰ Г
SSCG13438_45				KV1531A/413									
359	cpd1	CCR7	CCR7-bla U2OS	70 KV/1531A/413	Mip3-beta	>10000	0.45	0.6077	1000	6	-2	0.40	<u>6</u> 80 –
359	cpd1	CCR7	CCR7-bla U2OS	70	Mip3-beta	>10000	0.45	0.6077	316	-3	9	0.40	in -
SSCG13438_45		CCD7		KV1531A/413	Min 2 hata	. 10000	0.45	0.0077	100	-		0.40	년 40 - · · · · · · · · · · · · · · · · · ·
359 SSCG13438 45	срат	CCR7	CCR7-DIa U2US	70 KV1531A/413	iviip3-beta	>10000	0.45	0.6077	100	5	-11	0.40	¥
359	cpd1	CCR7	CCR7-bla U2OS	70	Mip3-beta	>10000	0.45	0.6077	31.6	-16	4	0.40	
SSCG13438_45	cnd1	CCP7		KV1531A/413	Min2 hota	>10000	0.45	0 6077	10.0	20	2	0.40	
SSCG13438 45	cpui	CCN7	CCR7-Dia 0203	KV1531A/413	wips-beta	>10000	0.45	0.0077	10.0	-20	-5	0.40	- 10
359	cpd1	CCR7	CCR7-bla U2OS	70	Mip3-beta	>10000	0.45	0.6077	3.16	-9	-12	0.40	
SSCG13438_45	cnd1	CCP7		KV1531A/413	Min3-beta	>10000	0.45	0 6077	1.00	-47	-11	0.40	1 100 10000
SSCG13438 45	cpui	cent	CCIV-DIa 0205	KV1531A/413	wips-beta	>10000	0.45	0.0077	1.00	-47	-11	0.40	Concentration (nM)
359	cpd1	CCR7	CCR7-bla U2OS	70	Mip3-beta	>10000	0.45	0.6077	0.316	3	18	0.40	
SSCG13438_45	cnd8	CCR7	CCR7-bla U2OS	KV1531A/413 70	Min3-beta	>10000	0.04	0.0500	10000	3	41	0.56	CCR7 : CCR7-bla U2OS
SSCG13438_45	cpuo	cent		KV1531A/413	impo beta	10000	0.04	0.0500	10000	5	41	0.50	cpd8
359	cpd8	CCR7	CCR7-bla U2OS	70	Mip3-beta	>10000	0.04	0.0500	3160	7	18	0.56	120 r
SSCG13438_45	cnd8	CCR7	CCR7-bla U2OS	KV1531A/413 70	Min3-beta	>10000	0.04	0.0500	1000	32	29	0.56	100
SSCG13438_45	cpuo	cent		KV1531A/413	wips beta	10000	0.04	0.0500	1000	52	25	0.50	
359	cpd8	CCR7	CCR7-bla U2OS	70	Mip3-beta	>10000	0.04	0.0500	316	13	8	0.56	i 2 80 −
359 SSCG13438_45	cpd8	CCR7	CCR7-bla U2OS	KV1531A/413 70	Mip3-beta	>10000	0.04	0.0500	100	36	28	0.56	
SSCG13438_45	cpuo	Contr		KV1531A/413	impo beta	. 10000	0.01	0.0500	100	50	20	0.50	<u> </u>
359	cpd8	CCR7	CCR7-bla U2OS	70	Mip3-beta	>10000	0.04	0.0500	31.6	27	12	0.56	
359 350 359	cnd8	CCR7	CCR7-bla U2OS	KV1531A/413 70	Min3-heta	>10000	0.04	0.0500	10.0	7	27	0.56	
SSCG13438_45				KV1531A/413					2010				
359	cpd8	CCR7	CCR7-bla U2OS	70	Mip3-beta	>10000	0.04	0.0500	3.16	3	16	0.56	
359 350 350 350 350 350 350 350 350 350 350	cpd8	CCR7	CCR7-bla U2OS	KV1531A/413 70	Mip3-beta	>10000	0.04	0.0500	1.00	13	8	0.56	-20
SSCG13438_45	cpuo	con	50.00 510 0205	KV1531A/413	po betu	. 19000	0.04	0.0500	1.00	15	0	0.50	1 100 10000
359	cpd8	CCR7	CCR7-bla U2OS	70	Mip3-beta	>10000	0.04	0.0500	0.316	11	36	0.56	Concentration (nM)

Further steps

Lead 1 has a good ADMET profile, is not expensive and eventually can be directly used as a topical solution

FEP+ guided Lead 1 optimization for both activity and selectivity will be further performed

Preclinical studies of optimized molecules should be performed

Preclinical studies and hopefully clinical studies are beyond the Micar21 capabilities at the moment. Thus, we are open and looking for collaboration, licensing and/or M&A

A brief description of the scientific approaches which Micar21 employ can be found in the next slides. We are in a process of hit identification and lead optimization of several molecules, such as for example GlyT2 inhibitors, and look for a collaboration in these directions too.

Thank you for your attention!

We are here to listen.

Dimitar Dimitrov

Micar21

CEO & Co-Founder www.micar21.com dimitar@micar21.com

small molecule is the key